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A computational framework for resolving
the microbiome diversity conundrum

Itay Daybog 1 & Oren Kolodny 1

Recent empirical studies offer conflicting findings regarding the relation
between host fitness and the composition of its microbiome, a conflict which
we term ‘the microbial β- diversity conundrum’. The microbiome is crucial for
host wellbeing and survival. Surprisingly, different healthy individuals’
microbiome compositions, even in the same population, often differ drama-
tically, contrary to the notion that a vital trait should be highly conserved.
Moreover, gnotobiotic individuals exhibit highly deleterious phenotypes,
supporting the view that the microbiome is paramount to host fitness. How-
ever, the introduction of almost arbitrarily selectedmicrobiota into the system
often achieves a significant rescue effect of the deleterious phenotypes. This is
true even for microbiota from soil or phylogenetically distant host species,
highlighting an apparent paradox.We suggest several solutions to the paradox
using a computational framework, simulating the population dynamics of
hosts and their microbiomes over multiple generations. The answers invoke
factors such as host population size, the specific mode of microbial con-
tribution tohostfitness, and typicalmicrobiome richness, offering solutions to
the conundrum by highlighting scenarios where even when a host’s fitness is
determined in full by its microbiome composition, this composition has little
effect on the natural selection dynamics of the population.

The microbiome, the diverse community of microbial symbionts
associated with a host, can immensely influence its host’s wellbeing in
numerous direct ways, including providing access to nutrients1,2, pro-
tecting against pathogens3,4, and inducing resistance to extreme
conditions5,6. Thus, a variety of traits and diseases have been linked to
alterations in microbiome composition and its interaction with the
host7,8, also prompting the issue of its part in ecological and evolu-
tionary processes9,10. These have inspired extensive research, particu-
larly in humans, to uncover the mechanisms that govern the host-
microbiome interaction. Such studies have been able to link the
composition of an individual’s microbiome to numerous factors, ran-
ging from the host’s health and physiology11–13, through its behavior14,15,
to its aging dynamics13,16.

At the same time, studies have also found that the compositionsof
different individuals’ microbiomes, even when considering only

healthy individuals in the same population, often differ
dramatically17–19. Such observations may be baffling and seem to con-
trast with the mass of evidence linking a host’s fitness to the compo-
sition of its microbiome. The apparent contradiction stems from the
fact that a trait that greatly benefits an individual is expected to spread
and fix in the population through selective dynamics, and to be highly
conserved20–22.

This expectation, to find reduced diversity in traits of importance
that is driven by selection, is supported by observations across mul-
tiple systems and biological modalities: it is widely observed in protein
structure23 and is used to infer aspects of functional importance24,25; in
genetics, the extent to which a genetic sequence is conserved is
commonly used as a measure of its importance for its bearer’s
fitness26–28. Reduced trait diversity in traits of functional importance is
also seen outside of biology, as in29, where the diversity of functional
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and symbolic design features of Polynesian canoes was quantified.
The existence of standing variation in fitness-influencing traits thus
calls for explanation; for example, standing polymorphism in func-
tional traits is often explained as a result of balancing selection30,
frequency-dependent selection31, character displacement32, niche
heterogeneity33, or adaptive trade-offs34. Driven by the observed var-
iation in the microbiome composition of individuals within the same
population, across populations, and among host species, studies have
examined the specificity of the relationship between microbes and
their hosts. Several such studies focused on gnotobiotic mice and
zebrafish, which present highly deleterious phenotypes. It has been
shown that introduction of arbitrarily selected microbiota, even from
soil or from phylogenetically distant host species, often leads to the
successful establishment of microbiota and to significant rescue
effects of host phenotypes35–38. Thesefindings deepen the conundrum,
as they showcase the importance of the microbiome, yet at the same
time present the magnitudes of variation it can withstand while still
bestowing a fit phenotype. These seemingly conflicting findings pose
what we term the microbial β-diversity conundrum.

Although the depth of the conundrum is not frequently appre-
ciated, the surprising diversity of microbiome compositions among
healthy individuals in the same population has not gone unnoticed.
The most commonly invoked explanation to this puzzle is the possi-
bility that thanks to functional redundancy amongmicrobial taxa, even
microbiomes that are taxonomically divergent from one another can
have similar functional profiles17,39,40. Thus, for example, different
microbes may be able to break down a particular complex carbohy-
drate, and different host individuals can receive this “service” from
different microbial species. Although plausible, the empirical support
for this claim has been heavily criticized41,42 and extensive, previously
unappreciated, functional diversity among individuals’ microbiomes
has been reported41–44.

The paradox can usefully be considered from an eco-evolutionary
perspective: on the one hand, the microbiome is able to influence
fitness significantly, suggesting that natural selection would shape its
composition and that themicrobiomewouldplay a role in selectionon
its host, while on the other hand, it shows a great deal of variation
within species, perhaps testifying against its relevance in selection-
dictating dynamics and evolutionary shaping of host populations.

Several computational models have been proposed to investigate
the evolution of hosts and their microbiome. Most have focused on
short-term dynamics, very specific selection-inducing scenarios, or on
the population dynamics of the microbiome itself45–47. For example,
one computational approach has suggested the possibility that selec-
tion against toxic stress can drive the co-evolution of adaptive cap-
abilities of the host microbiome48. Another model-based study has
suggested that to preserve the existence of symbionts that benefit
their host at a cost to themselves, very strict conditionsmust bemet49.
The proposed conditions include fast host reproduction and strong
vertical transmission of the microbiome, assertions that have recently
been challenged50.

Despite the rapid developments in the study of the microbiome
and the understanding of its importance, research has focused pri-
marily on its influence over short periods on hosts’ wellbeing or the
evolutionary dynamics of themicrobiome alone. Understanding of the
dynamics between the microbiome and its associated hosts is still
incomplete, and an intuitive and broad theoretical framework that will
allow explicit hypothesis testing regarding these dynamics over many
generations is still lacking.We attempt to bridge this gapby proposing
a framework that implements considerations from the field of micro-
biome research, alongside perspectives and approaches typically
found in studies of populationdynamics and evolutionarybiology. The
framework is designed in a modular and general way, to allow
exploration of a broad range of questions on different timescales.
Furthermore, this framework can serve as a null model, as it assumes

neutral dynamics at the microbial level, in the ecological sense of
neutral models51,52. In particular, it assumes no niche specialization
among themodeledmicrobes, aiming to adopt themost parsimonious
approach and to offer explanations to observed phenomena that rely
on as few assumptions as possible.

In this study we use our framework to propose several possible
solutions to what we dubbed the microbial β-diversity conundrum,
highlighting scenarios in which despite a major influence of the
microbiome on each individual’s fitness, the role of the microbiome
compositionon thehosts’populationdynamicsmay vary fromgreat to
none. These, in turn, offer testable predictions regarding the condi-
tions in which the microbiome composition is expected to be con-
served or divergent among individuals.

Results
The model
Our agent-based framework tracks a population of host individuals
and their corresponding microbiomes over time. It shares many
commonalities with the frameworks that have been put forth by
Zeng et al.45,46. several differences are discussed in the Methods
section. The basic mechanisms of the simulations follow a Wright-
Fisher model using discrete non-overlapping generations53,54. For
simplicity, it is assumed that all hosts reproduce asexually, avoiding
the need to explicitly simulate the pairing of individuals for mating.
The model focuses on utilizing ecological and evolutionary princi-
ples of microbiome transmission, assembly, and contribution to
host fitness while setting aside other factors that can be further
explored in the future.

We simulate the host as a passive microbe recipient, receiving
microbes randomly based on their abundance in the microbial pool
available to it. Furthermore, the microbiome assembly is dictated by
the arrival order of different microbial taxa, a logistic growth function,
and is limited only by the carrying capacity, eliminating effects of any
other intra-microbial dynamics, i.e. it is a neutralmodel in anecological
sense52,55. Lastly, after the assembly is complete, there are no further
changes in the microbiome configuration of an individual host. Thus,
our framework is highly simplified and general, not bound by the
explicit mechanisms of any specific host, microbe, or eco-system. This
allows it to serve as a tool for understanding underlying patterns that
may be difficult to notice or tease apart from other processes in more
complex systems, and as a null framework for fundamental host-
microbiomedynamics. The frameworkwasdesigned in amodularway,
such that future explorations that apply itmay introducemore specific
assumptions along any of these dimensions.

The framework can simulate a wide range of eco-evolutionary
scenarios. However, themain forward-in-time process remains similar.
The host population size N is constant and generations are non-
overlapping. To assemble a new generation,N new agents are defined,
and a parent is selected from the preceding generation for each one.
Next, this individual’s microbiome composition is assembled using a
microbial pool constructed according to its parental microbiome and
the population-wide microbiome. Finally, the hosts’ fitnesses are cal-
culated based on the composition of their newly acquired micro-
biome, thus allowing the generation cycle to continue.

The selection of a parent for each offspring is done by randomly
choosing one host from the previous generation, where high-fitness
hosts have a proportionally larger probability to be chosen. Each
choice is independent, enabling some hosts to produce multiple off-
springwhilemaintaining a constant population size (Fig. 1). In a neutral
selection scenario, where all host fitnesses are constantly identical, all
hosts have an equal probability to be chosen as parents. Thus, in a
population of size N, random drift will drive a coalescent process of
host lineages such that on average all host lineages will coalesce to a
single common ancestor after 2N generations, following a neutral
Wright-Fisher process53.
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A host acquires microbes from two main sources. The first is the
parental microbiome, contributing to the total microbe pool available
to the offspring according to a ‘vertical transmission coefficient’ Tv.
Themicrobiome composition of the parent is normalized to represent
the relative abundance of the different microbial species, and later
multiplied by Tv to represent its relative contribution to the pool from
which the offspring will sample microbes. Thus, if the abundance of a
specific microbe species in the parent is x, it will contribute
Tv � x

all microbes in
the parent host

of that species to the microbiome sampling pool

available to its offspring. The second source is the population-wide
microbiome. This oblique microbiome transmission from non-
parental individuals is denoted by the transmission coefficient Th

56.
For simplicity, we refer to this type of transmission as horizontal
transmission, in contrast to the parental vertical transmission.
Similarly, if the abundance of a microbe taxon within the entire
parent population is y, the environment will contribute
Th � y

all microbes in the
parent population

of that specific taxon to the pool. The ratio

between Tv and Th dictates the transmission scenario being simulated
(Fig. 2). For simplicity and increased tractability, to uncover patterns in
the microbiome’s effect on its host’s selection dynamics, we mainly
focus in this manuscript on extreme transmission scenarios, where
either Tv =0 or Th =0, corresponding to purely vertical or purely
horizontal transmission. Other transmission schemes are feasible:

when Tv
Th

>1, the transmission is mostly vertical, allowing higher con-

servation of microbiome-related traits between a parent and its off-

spring, whereas when Tv
Th

<1 the transmission is mostly horizontal,

which lowers the correlation between parent and offspring micro-
biome compositions.

The microbiome assembly process is performed as the available
microbe species start inhabiting the host, where more abundant spe-
cies in the pool of candidatemicrobes aremoreprobable to be thefirst
to establish within the host (Fig. 2). Between establishment events, all
previously acquired microbe populations grow logistically, limited by
a predefined maximal microbial species’ population size. The host’s
microbiome takes shape asmore species join andgrow innumber until
the overall carrying capacity of microbes in the host is reached.

A host’s fitness score is calculated by summing the individual
contribution of each microbe taxon it possesses. For simplicity, the
calculation in the simulations we carried out was done based on the
presence/absence of each microbial species, regardless of its abun-
dance. Thismayoccur, for example, if the helpermicrobiome supplies a
vital nutrient, otherwise inaccessible to the host, required in small
amounts57. Eachmicrobial species contributes a certain value to a host’s
fitness score. At the start of each simulation, each microbial species is
randomly assigned a fitness value that this species’ presence will con-
tribute to the host, drawn from a distribution (Fig. 3). Several con-
tributiondistributions areplausible, including a stepdistribution,where
some taxa contribute much while others contribute little (Fig. S1a),

Parent Generation

Offspring Generation

Weighted Random Choice

High Fitness Host Low Fitness Host

Fig. 1 | An illustration showing the inter-generational reproduction scheme.
The top row represents the host population of the parental generation, and the
bottom row represents the offspring host population. The dashed arrows indicate a
parent-offspring relation, and the color represents the host fitness, determined by

itsmicrobiome composition (green, high fitness; red, low fitness). Themicrobiome
composition of the offspring is acquired in part from the parent, thus the fitness of
parents and their offspring is somewhat correlated. Fitter hosts produce relatively
more offspring, and the population size remains constant.

Parent Host

Parent Population

Available Microbiome Pool

Weighted Random
Choice

T

T

Fig. 2 | A high-level display of offspring microbiome acquisition from the two
available sources. Parental source (cold hues) and population-wide microbiome
(warm hues). Each colored ellipse represents a microbe, where a specific taxon
corresponds to a specific color. The two sources dictate the abundance of the

microbe species in themicrobial species pool fromwhich the offspring will sample
microbes, with relation to the vertical and horizontal transmission coefficients Tv

and Th.
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a low-variance distribution, determining that the contributions of dif-
ferent taxa are similar, and an almost uniform distribution, leading to a
broad range of different contributions by different taxa (Fig. S1b).

The simulation continues until the number of common ancestors
of the hosts in the population, denoted as AC for ‘ancestral coales-
cence’, reaches a predetermined value. For example, to follow the
simulation until all the hosts in share the same common ancestor, the
simulation is run until AC= 1.

We used the framework to execute simulations under various
combinations of parameters. These include different microbial
assembly and transmission factors, varying host population sizes, and
a few other ecological components of the model. With these we were
able to detect and explore scenarios that may hold the solution to the
conundrum highlighted above, highlighting situations in which the
microbiome determines host fitness while remaining relatively non-
conserved.

Running and interpreting simulations
The β-diversity conundrum arises from empirically supported and
seemingly contradicting observations—on the one hand the micro-
biome is crucial for host fitness, while on the other hand it can differ
vastly even among healthy individuals in the same population. The
contradiction stems from the latter being anunexpected characteristic
for afitness-determining trait, whichare typicallyhighly conserved.We
seek solutions to the conundrum in the form of scenarios in which
both observations are true and their co-existence is interpretable. For
this, we consider the most conservative scenarios with respect to the
first of the two conditions we are after. Firstly, in our simulations the
host fitness is solely a function of microbiome composition, epito-
mizing the dependence of the fitness of hosts on their microbial
symbionts. Secondly, microbiome diversity among individuals would
arise when selection cannot effectively act to favor one composition
over another via selection on hosts. An obvious setting in which this
would occur is when microbiome composition is not heritable. This
trivial case of purely horizontal transmission ofmicrobes is explored in
the supplementary. We focus instead on the setting at the other end of
the spectrum: the case in which transmission is purely vertical. Solving
the conundrum is thus reduced to detecting in our framework, under
thesemost conservative conditions, fundamentally different scenarios
in which selection on microbiome composition is ineffective.

Measures of microbiome influence on natural selection
We used two measures to evaluate the microbiome’s effect on selec-
tion dynamics in the host population. The first is the observed differ-
ence between the fitness scores of hosts with different microbiome
compositions, expressed in the distribution of hostfitnesses in a single
generation. This acts as a direct intragenerational approximation of
how the microbiome influences the differential of selection among

individuals and is not directly influenced by different microbial
transmission schemes. The second measure is the number of genera-
tions that pass until AC reaches a predefined value. Taken from the
field of population genetics, this measure quantifies the long-term
effects of the microbiome on the selection dynamics in the host
population over many generations.

Applying the two measures, we characterized conditions under
which the microbiome can substantially influence host selection,
alongside key scenarios where different microbiome compositions
have little influence or none, even though the microbiome in our fra-
mework is the sole contributor to the fitness of its host.

Species-rich microbial configurations facilitate high diversity
amonghosts ofmicrobiomecompositions that all lead to similar
fitness values
We first examined the possible effects of themicrobiome’s α-diversity,
microbiome diversity within individuals, on the selection-related
dynamics of the host population, by simulating two microbiome
structures. The first structure represents a species-rich microbiome
composition, both in the number of species and their abundance,
corresponding to the one that is characteristic ofmany vertebrate host
species: each individual carries a microbiome composed of between
200 and 300 microbial species, ranging in relative abundance from
highly prevalent to rare, with few particularly common taxa account-
ing for the majority of the overall microbial biomass of that individual
(see, e.g.17,58–60) (Fig. S2). The second structure is the complement of
the latter, exhibiting a species-poor composition with a lower number
of species and a lower carrying capacity. This structure simulates the
microbial composition found for example in many insects, where
typically one or two microbial species dominate and only a few others
are sparsely present61,62 (Fig. S2b). In the supplementary we explore
several additional compositions (Fig. S3 and respective results in
Figs. S8–S9).

We ran 100 repeats of the simulation with each of the two host
population types—the species-rich and species-poor microbiome
configurations under vertical microbial transmission, where each
microbe species contributes differently to its host fitness. The results
display the empirical distribution of hostfitness scores observed in the
first generation (Fig. 4a). The fitness scores of the hosts in the species-
poor population are widely distributed and show great variance
(Fig. 4b), underlining that some hosts have gained a very high relative
fitness score by acquiring the most beneficial microbes, whereas oth-
ers did not.

In contrast, we find that the host fitness scores in the species-rich
population present lower variance (p < .001) (Fig. 4b). This results in
the least fit host being almost equivalent to the fittest one, stripping
themicrobiomeof the ability to influencehost selection. Notably, both
in the species-rich and in the species-poor microbiome configuration

Fitness =  5  +  10  +  2  +  0  =  17

Microbe
Taxon

Fitness
Contribution

5

10

2

0

3.5

Pre-determined
Contribution

Fig. 3 | An example of thefitness calculationof a single host.The contribution of
each microbe taxon (left) is predetermined at the start of each simulation
according to various parameters. The fitness of each host is calculated (right)
according to it and to the microbe taxa it possesses. The calculation does not

address taxa abundance but rather acts as a linear sum of the contributions of
species present in the microbiome. After the fitness of the entire population is
calculated, it is divided by the maximal value to adhere to the traditional ½0,1�
fitness range.
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scenarios the β-diversity within the population at the beginning of
each simulation is high, with mean pairwise Jaccard distances between
individuals of 0:82 and 1 respectively. In these simulations, β-diversity
changes over time; only in the species-poor scenario do fitness dif-
ferences among hosts drive selection, leading the lineage with the
beneficial microbiome to spread and to a respectively rapid decrease
in the population’s mean β-diversity (see also supplementary fig-
ures S12-S13). Combining these findings, we conclude that a species-
richmicrobiome configurationmay act as the first key to themicrobial
β-diversity conundrum. It presents a state where the microbiome
affects fitness and is diverse between hosts, yet it does not create a
noticeable fitness difference, giving rise to neutral population
dynamics.

These results can be attributed to the lawof large numbers, which
formulates the tendency of large sample sizes to approximate well the
mean of a hidden distribution63. We simulate the microbial species’
different contributions to host fitness such that they can be viewed as
discreetly drawn random variables from some background distribu-
tion. Thus, when summing the fitness contributions of species in a
microbiome configuration, we expect to get an approximation of the
mean of the background distribution multiplied by the number of
species in that microbiome. According to the law of large numbers,
when the microbiome is species-rich the approximation of the multi-
pliedmean in each hostwill bemuchbetter thanwhen themicrobiome
is species-poor. This leads to the low variance in fitness scores
observed between hosts in populations with species-rich microbiome
configurations, creating a situation inwhich themicrobiome isunlikely
to generate a large enough fitness difference between hosts to sig-
nificantly influence their selection dynamics.

This scenario, in which very different microbiomes lead to similar
overall contribution to host fitness, shares featureswith the commonly
invoked solution to the β-diversity conundrum, which was mentioned
earlier: that different microbiome compositions, thanks to functional
redundancy among different species, share functional similarities that
allow them to provide the same “services” to the host17,40,64–66. In eco-
logical terms, this explanation relies on a niche-based perspective,
assuming that functional niches exist in the gut and may be filled by a
range of microbial species. The solution proposed here based on our
simulations does not contradict this niche-based explanation, and in
fact aligns well with it. However, it relies on less assumptions. As our

framework is neutral (in the ecological sense, with respect tomicrobial
dynamics and functions), it is more parsimonious and sidesteps the
criticism that has been levelled at the functional redundancy hypoth-
esis (e.g41,42).

To validate our hypothesis on a longer time scale, we address our
second measure—the number of generations to ancestral coalescence
under three microbial transmission schemes—pure vertical, pure hor-
izontal, and an equal combination of the two, dubbed ‘midway’
transmission. We compare the number of generations until coales-
cence in each population to this measure in a neutral scenario where
the coalescent dynamics are only the product of random drift, and the
microbiome is irrelevant to the hosts’ fitness. Under vertical trans-
mission, The simulations’ results show that the time it takes for the
populations with the species-rich microbiome to coalesce is almost
identical to the neutral scenario (p = 0.99), while the populations with
the species-poormicrobiome composition coalesce to a single lineage
in half that time on average (p <0.001) (Fig. 5a). This indeed matches
our results using the first measure, further implying that the micro-
biome is not affecting the hosts’ natural selection when it is highly
α-diverse, and vice versa.

When addressing pure horizontal transmission dynamics, the
coalescence times of both the species-rich and species-poor micro-
biome configurations behave similarly to that of the neutral dynamics
(Fig. 5c). This is the expected outcome, as when the microbial con-
figuration is not at all linked to the ancestry of the individual host, itwill
not be able to benefit specific lineages, leaving the assembly of the
microbial configurations in each generation to neutral processes.
Under the midway microbial transmission scheme (Fig. 5b), the
species-rich configuration remains indistinguishable from neutral
dynamics (p = 0.81), but the coalescence times of the species-poor
populations are faster relative to it and to the neutral dynamics
(p < 0.05), yet not as fast as in purely vertical transmission. This
coheres to the nature of the “midway” transmission as a mixture of
both vertical and horizontal transmissions—the vertical transmission
enables host lineages to acquire unique microbial compositions that
bestow different fitness scores, thus driving the system to faster coa-
lescence, while the horizontal transmission somewhat breaks this
exclusivity, delaying coalescence (Fig. 5c).

The results in the species-rich populations showcase a
feasible scenario where both sides of the conundrum are true

a b

Fig. 4 | The influence of the microbiome’s species-richness on first-generation
fitness scores across 100 repetitions. This is shown for both scenarios: a species-
rich microbiome (blue) and a species-poor microbiome (orange). a Normalized
histograms representing the distribution of the host population’s fitness scores.
Lines represent the Gaussian kernel density estimation of the fitness scores dis-
tribution. Each scenario shows 5000 individual hosts. b boxplots displaying the

observed fitness scores variances across 100 repetions of the simulation. Boxplots
here and throughout the manuscript are presented with the sample median and a
box representing the 25th to 75th percentiles. Whiskers portray the sampleminima
and maxima. Here and throughout the manuscript, double-sided t-tests were used
for calculation of statistical differences between groups.
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simultaneously—The microbiome is the sole contributor to the fit-
ness of its host, yet still it is not able to influence the selection
dynamics in the host population. This observation, under the most
extreme case of purely vertical microbial transmission, highlights
the richness of the microbiome compositions as a possible solution
to the microbial β-diversity conundrum.

Large differences in the contributions of microbial species to
fitness lead to effective selection among hosts
We saw that species-richmicrobiomes are less likely to drive selection.
So—is microbiome composition irrelevant to selection in species that
typically have high α-diversity microbiomes? We tried searched for
conditions which would invalidate the assumptions of the law of large
numbers. Thiswould require that althoughmany species are present in
the microbiome, the sum of their contributions still would not
approximate the multiplied mean of the background contributions
distribution well. Thus, we tested the influence of altering the dis-
tribution itself, i.e., the contributions of microbe species to the fitness
of their hosts. We examined three background distributions of
contributions-to-fitness among the differentmicrobe species: The first
is a step distribution, where each microbe species contributes either
the maximal or minimal value possible, a trait set only once at the
beginning of the simulationby random samplingwith the probabilities
0:025 and0:975 respectively (Fig. S4a). This Effectively leads to 2.5%of
themicrobiome taxa to greatly contribute to the hostfitness, while the

rest contribute very little. The second is an almost uniformdistribution
where each contribution value between the minimal and the maximal
values is equally represented, as was used in the previous section (Fig.
S4b). The third is a midpoint between the two previously described
schools, where most species would result in contributing little while
few species contribute greatly (Fig. S4c).

We ran the simulation under the three scenarios onpopulations of
hosts with the species-rich microbiome configuration. As before, we
first look at the distribution of fitness scores in the first generations, to
understand the microbiome’s predisposition to influence host selec-
tion under each scenario. Truly, we see that altering the scheme by
which themicrobiomecontributes to its host’sfitnesshas an impacton
the distribution of fitness scores (Fig. 6a). When comparing the three
scenarios, the observed trend is of an increase in fitness scores’ var-
iance as the microbiome contribution distribution is less uniform
(p < 0.001) (Fig. 6b).

These findings correspond to the law of large numbers: when the
distribution’s variance is larger, a greater sample size is required to
approximate its mean63,67. Thus, when the contribution of each
microbial species to its host’s fitness is drawn from a high-variance
distribution, even in species-rich microbiomes the number of species
may still be small enough such that different microbiome composi-
tions lead to significantly different fitness scores.

The long-term effect of the different microbial contribution dis-
tributions, as seen in the time until coalescence under the vertical

a b

Fig. 6 | Influence of different distributions of microbes’ contributions on host
fitness. These are shown in a species-rich host, for first-generation fitness scores
across 100 repetions for three contributions’ distribution scenarios: uniform

(green), step (blue) and a midpoint between the two (orange). a Distributions of
fitness scores. b Variance in fitness scores. See also Fig. 4.

a b c

Fig. 5 | Influence of the microbiomes’ species richness on the number of gen-
erations it took for all existing hosts in the population to share a common
ancestor.Results are calculatedacross 100 repetitions of the stochastic simulation.
Neutral scenario without microbiome effect (red), species-rich microbiome (blue)

and species-poor microbiome (orange). a Under purely vertical transmission.
b Under mixed transmission (half vertical, half horizontal). c Under purely hor-
izontal transmission.
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transmission scenario, also supports this hypothesis. We indeed see
that under the uniform-distribution scenario the times to coalescence
are quite similar to the ones under neutral dynamics (p =0.99),
meaning the microbiome did not have a significant influence on
population dynamics of the hosts (Fig. 7). In contrast, when the var-
iance in contributions is large, the time to coalescence shortens by half
(p < 0.001), indicating that themicrobiome did take part in driving the
host selection processes by allowing the more fit host lineages to take
over the population within a smaller number of generations.

Under purely horizontal transmission dynamics, we see that the
time to lineage coalescence remains similar to that of the neutral
dynamics under all the three different distributions of microbial con-
tribution (p >0.3) (Fig. S6a). This is reasonable as neutral selection
dynamics are expected when the fitness of hosts is not strongly linked
to their ancestry, and the fitness is determined by many components,
reducing the effect of small fluctuations in its composition. The results
are similar under a midway microbial transmission scheme (Fig. S6b).

The results arising fromthese simulations, especially under purely
vertical transmission, show that in host populations with species-rich
microbial compositions a possible solution to the conundrumcould lie

within the particular fashion in which the microbes contribute to the
fitness of their hosts. For example, if the distribution of the microbial
contributions to the fitness of the hosts is uniform, then the micro-
biome does not affect the selections dynamics of its hosts despite
being the sole determiner of their fitness.

Microbiome is more likely to drive selection in large host
populations
Another theoretical and empirical factor known to play a prominent
role in the population dynamics and its selection dynamics is its
size68–72. We thus set out to testwhether the size of the host population
can play a part in the microbiome’s ability to drive natural selection
dynamics among its hosts. To do so, we simulated host populations
varying only in the magnitude of the number of hosts that comprise
them: 20, 200, and 2000 hosts. The hosts’ microbiomes were simu-
lated using the species-rich configuration, and the distribution of
microbes’ contribution to their host’s fitness was under an almost
uniform scenario (see Fig. S10 for a complementary exploration of
population size effect in hosts with species-poor microbiomes).

We begin by looking at our short-term indicator for the micro-
biome’s ability to influence host selection, the distribution of fitness
scores in the first generation (Fig. 8a). We see that unlike the factors
that we tested previously, the population’s size does not lead to large
differences in the distribution or variance of the hosts’ fitness scores
(Fig. 8b). In other words, the differential of selection among host
lineages is small in this case and is not affected by population size.

Perhaps surprisingly, however, when we examine the multi-
generational effects of the population size on the microbiome’s
influence on selection, we find that population size alters the extent to
which the microbiome influences population dynamics. To compare
coalescence times in populations of different sizes under purely ver-
tical transmission dynamics, we normalize the generation of coales-
cence by the population size, N (Fig. 9). We see that the larger the
population, the relative number of generations needed to reach a state
where all hosts share a common ancestor becomes significantly
shorter (p < 0.001),. This suggests that although a single-generation
indicator does not show, for different N values, a different differential-
of-selection among lineages, the microbiome is more capable of
driving selection in larger host populations. This is due to the
increased efficacy of selection in large populations, and the increased
likelihood that in a large population, even small fitness differences will
be realized, as is well-known in models of genetic evolution69–71,73,74.
This contrasts with the dynamics in small populations, in which ran-
dom drift is a relatively more prominent force69–71,73, and in which
effective selection due to microbiome-mediated fitness effects seems

Fig. 7 | Influence of different distributions of microbes’ contributions to host
fitness. Explored in species-rich hosts, shown via the distributions’ influenceon the
number of generations it took for all existing hosts in the population to share a
common ancestor, under purely vertical transmission, across 100 repetitions of the
stochastic simulation. Neutral scenario without microbiome effect (red), uniform
(green), step (blue) and a midpoint between the two (orange).

a b

Fig. 8 | Influenceofhostpopulationsizeonfirst-generationfitness scores. Shown across 100xnhosts.n is the number of hosts in the smallest population size scenario,
n = 20. Shown for three size scenarios—20 (blue), 200 (orange) and 2000 (green). a Distributions of fitness scores. b Variance in fitness scores. See also Fig. 4.
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less likely. As expected, under horizontal and midway microbial
transmission schemes, the size of the host population does not sig-
nificantly affect the time to lineage coalescence (Fig. S7). We thus find
that, in line with classic population genetics’ theory, in smaller host
populations the microbiome is limited in the extent to which it can
influence the selection dynamics of its hosts. This highlights the
population size as another solution to the seemingly conflicting
aspects of the microbial β-diversity conundrum.

Discussion
In this paper we highlight an overlooked conflict in empirical findings
from microbiome research—‘the microbial β- diversity conundrum’—

and attempt to reconcile it by introducing a simple and modular fra-
mework capable of simulating the evolutionary and ecological
dynamics of a host population and their associated microbiomes. We
propose different answers to the paradox by simulating various sce-
narios, including different assembly and contribution dynamics of the
microbiome, different microbial transmission schemes, and different
host population-related parameters. Our method of suggesting solu-
tions to the puzzle was to demonstrate probable scenarios where the
microbiome alone is affecting its hostfitnesswhile also displaying high
β-diversity and inability to drive selection between the hosts in the
population. In these scenarios, we aim to also pinpoint the parameters
that facilitate this duality. In this article we present three such sce-
narios—a species-rich microbiome configuration, a relatively uniform
distribution of contributions to hostfitness betweenmicrobial species,
and a small host population size.

Resolving the conundrummeans settling the conflict between the
empiricalfindingswhichbrought themicrobialβ-diversity conundrum
to light—ones that underline themicrobiome’s importance to its host’s
fitness on one hand1–8,11,13–16,75, but that do not lead to the conservation
of a particular microbiome structure in a population17,18. We find that
one solutionmay lay in the composite natureof themicrobiome. Being
composed of many different species with different contributions, as
opposed to traditional traits which are usually thought of when dis-
cussing trait conservation, the overall influence of the microbiome on
its host is subjugated to the law of large numbers. As such, we expect
that species-poor microbiome configurations are more likely to be
driving selection among hosts, and thus be respectively more con-
served. This hypothesis is supported by empirical observations in
insects, which are characterized by microbiomes composed of

relatively few species, where greater uniformity in microbiome com-
positions has been reported76–80. Such a difference in the composi-
tionality of the microbiome may also occur between different body
sites’ microbiomes in the same host; in humans, for example, the
vaginal microbiome is relatively species-poor, and—in line with the
hypothesis above—is characterized by relatively lowwithin-population
β-diversity81,82.

Our findings may direct further research to empirically validate
whether the microbial diversity conundrum can truly be explained by
the solutions we have suggested here. Novel research can focus on the
real-world causes in implications of the conundrum, and test if more
microbiome β-diversity or conservation is found in populations that
are characterized by one or more of the factors that were discussed,
per the results of our simulations.

Notably, the three factors that we highlight as providing possible
solutions to the conundrum do so in qualitatively different ways, with
rather different characteristics. All three factors:microbiomediversity,
contribution distribution of the microbiome, and host population size
can influence the number of generations needed for the host lineages
to coalesce, yet only the first two impact the fitness scores’ distribu-
tions in the first generation. This difference underscores the multi-
plicity of types of factors that take part in the correlation between
microbiome and host selection. The solutions regarding the micro-
biome richness and distribution of contributions are driven by the
tendencyof selection tobe subject to randomsampling and regression
towards a mean, with results that are mediated by the law of large
numbers and are thus evident even in a single generation. In contrast,
the solution related to the host population size influences selection
dynamics over multiple generations, creating (or not creating) slight
selection biases very gradually, which are not necessarily noticeable
within a single generation. Interestingly, these factors require different
perspectives for their consideration and are traditionally treated
within different sub-disciplines of academic study; they are thus rarely
considered within the same framework.

This also highlights a significant difference between our two
measures of themicrobiome’s influence on host natural selection. The
first, the distribution of fitness scores in the first generation, corre-
sponds to what is typically monitored in empirical studies of micro-
biome and its effect on its host’s wellbeing. Discussing the variance of
fitness scores in our simulation parallels with examining the pheno-
typic diversity among hosts with varying microbiome compositions,
which is what initially sparked the notion of the microbiome’s impor-
tance. In contrast, the second measure—the time to ancestral coales-
cence—parallels the microbiome to a hereditary trait. By summarizing
its impact on selection processes through multiple generations this
measure may be more appropriate for inference or exploration of
long-term evolutionary dynamics of the host population, closer in
spirit to frameworks of population genetics and molecular evolution9.

To keep our framework general and modular, most of the ‘real-
world’ processes regarding the population and ecological dynamics of
the microbes and the hosts were not implemented. Hosts reproduce
asexually and are passive in the microbiome acquisition process, the
microbes do not interact among themselves in ways other than being
subjected to the host’s carrying capacity, and after the initial assembly
process ends, themicrobiome remains constant throughout the host’s
life span. The framework was designed in a modular way, allowing
future incorporation of these processes, alongside other dynamics
that were not implemented in the model. By using a simplified model,
we were able to identify underlying factors mediating the micro-
biome’s ability to affect host selection even under simplified and
selectively neutral intra-microbiome dynamics. The determinants of
the microbiome’s β-diversity in reality may be many; furthermore,
even within the simple version of our framework that was used in this
study, a broad range of values of β-diversity can occur, depending on
the parameter values used for the microbiomes’ assembly; here, we

Fig. 9 | Influence of host population size on the number of generations it took
for all existing hosts in the population to share a common ancestor divided by
the populations size. Shown under purely vertical transmission in the species-rich
microbiome scenario, across 100 repetitions of the stochastic simulation. 20 hosts
(blue), 200 hosts (orange) and 2000 hosts (green).
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focused on highlighting scenarios in which high β-diversity would be
maintained over evolutionary time-scales despite a significant role of
the microbiome in determination of fitness. In the future, our frame-
work may also be utilized to explore the expected β-diversity in more
specific scenarios, such as for a certain species in which the real
parameter values are known. We have also focused here on the
hardest-to-explain scenario with respect to β-diversity, namely the
case inwhich it fully determines the host’sfitness and yet remains high.
Our framework can also be used to explore scenarios in which
β-diversity is low in the first place due to the assembly process or other
constraints, or to study cases in which fitness is only partially depen-
dent on the microbiome’s composition.

The framework’s modularity enables it to simulate a broad range
of scenarios, and may be used in future research of questions that are
unrelated to the microbial β-diversity conundrum. For example, the
simulations can be used to predict the environmental rescue effect of
microbial species within the microbiomes of a host population. In
other words, it can be used to analyze the probability, and the factors
controlling it, of species ofmicrobes thatwere extinct in a population’s
microbiome to spread once again through the population if re-
introduced at some rate from the environment. This can contribute to
a current ongoing discussion about the possibility and benefits of
human microbiome rewilding—the act of reintroducing lost microbe
species to human microbiomes to regain health benefits our hunter-
gatherer ancestors possessed83,84.

In conclusion, we have focused on a surprising paradox that has
gone largely unnoticed thus far—themicrobial β-diversity conundrum,
an apparent conflict between two commonly discussed findings
regarding themicrobiome.We have attempted to understand how the
composition of the microbiome can be crucial for host fitness, while
also being highly divergent among healthy individuals. Using a series
of simulations, our research presents a list of several probable factors
that could enable this duality—a species-richmicrobiomecomposition,
a uniform distribution of microbial contributions to host fitness, or a
large population size of hosts. Not only can these solutions resolve the
paradox, but also direct further research regarding the microbiome’s
diversity and the intricate relationship between hosts and their asso-
ciated microbes. Furthermore, the presented framework is modular
and can be used to explore a range of additional topics inmicrobiome
research.

Methods
The framework implements an agent-based simulation of a host
population consisting of a fixed number of individuals, N = 50, with
B=2000 microbe taxa available in the environment unless stated
otherwise. Each executed simulation was run with AC= 2, meaning
until the populationwas comprised of hosts sharing nomore than two
common ancestors.

Measuring the microbiome’s influence on host selection
The first measure we used to study selection dynamics—the dis-
tribution of host fitness scores in a single generation—is directly
derived from the individuals’ microbiome compositions and corre-
lates with each individual’s expected mean number of offspring,
thus acting as a relevant indicator for the microbiome’s effect on
host population dynamics. We approximated the magnitude of the
difference using the fitness scores’ distribution’s variance, compar-
ing it for the first generation under each simulated scenario.
Although it is a direct measure, it is also a short-term one, appliable
only for individual generations.

The secondmeasure of selection dynamics is the relative time it
takes for all the hosts in the population to share the same ancestor.
This evaluation is taken from the field of population genetics and is
an adaptation of the time it takes an advantageous allele to fixate in a
population, paralleling the alleles with the microbiome71. Naturally,

it is most relevant when microbiome transmission is mostly vertical
since an influence on the coalescence generation is expected only to
a limited extent in scenarios where the microbiome is not strongly
correlated to specific lineages, as is the case in horizontal
transmission.

Generation of microbiome templates
Instead of real-time calculation of each host’s exact microbiome
structures, “empty”microbiome templates denoting only the number
of species in the microbiome and their abundances were pre-gener-
ated, only to be assigned specific taxa during the simulation itself. In
the moment of creation, a host is assigned such a template—empty
slots varying in size representing abundance, each to later be allocated
to a different microbe taxon, out of a total B existing taxa. The
microbiome templates are generated by simulating microbial estab-
lishment events, where each represents one slot in the final template.
As these consecutive events act as a Poisson process, eachwaiting time
ti, between establishment events ei�1 and ei, is drawn from an expo-
nential distribution with a tunable rate parameter λ1:

8i2N ti ∼ Exp λ1
� � ð1Þ

Afterward, each waiting time is multiplied by an establishment
probability coefficient si, whose value reflects the probability of a
successful establishment event, as a function of its chronological
order. In our framework, three such coefficient vectors can be
applied, each describing a different microbiome acquisition sce-
nario. (i) A null scenario where all establishment probabilities are 1,
thus ti remains as is (Fig. S5a). (ii) The earlier the establishment
event, themore likely it is, simulating the growing struggle for space
and resources when more and more taxa inhabit the same niche85.
The scaling factors follow a scaled exponential decay with a scaling
factor Es and a rate λ2 (Fig. S5b). (iii) The highest establishment
probabilities are received after several pioneer taxa have already
established within the host, colonizing it, and making it more
habitable86, followed by a decrease in the probability, like in the
previous case. This creates a “hump” shaped probability vector, with
parameters a,b,c creating the hump parabola ax2 +bx + c, alongside
p controlling the index of the event with the highest priority and a
scaling factor Hs. The vector is then normalized to the range ½0 . . . 1�,
and the minimal probability is set to Hm (Fig. S5c). The explicit
notation of the three establishment probability vectors is:

1 j i2Nf g ð2Þ

Es + e
�λ2i

1 + Es
j i2N

� �
ð3Þ

Let P =a i� pð Þ2 +b i� pð Þ+ c !

max
1

1 +Hs
� Hs +

P �min Pð Þ
max Pð Þ �min Pð Þ

� �
,Hm

� �
ji2N

� � ð4Þ

The drawn waiting times are scaled by the scaling vector, relatively
shortening the waiting time of a high probability event and elongating
that of a low probability one. Thus, the final waiting times, tf i, are:

8i2N tf i =
ti
si

ð5Þ

During these waiting times, the already established taxa grow in
number in each timestep according to a classic logistic growth
function, where Cs,k,m represent the maximal size of a single taxon
within the host, the growth steepness, and the sigmoid midpoint
respectively. The population size of a single microbe taxon after
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ti time would be:

Cs

1 + e�k ti�mð Þ ð6Þ

The microbiome template’s computation is finished when the sum of
the abundances of all microbe taxa within the host has reached a
predefined global capacity, Cg .

Different parameters were used to pre-generate 10,000 different
microbiome templates for both the species-rich and species-poor
microbiome configurations, to be chosen from randomly during the
initialization of each host in the simulations (Tables S1a, S1b). To reach
species-rich microbiome templates, waiting times were scaled
according to scenario (iii), and to reach the species-poor templates,
waiting times were scaled according to scenario (ii). Supplementary
figure S3 depicts microbiome templates that were constructed with
slightly different parameters, used in simulations that are described in
the supplementary material as well.

Microbiome acquisition
After a microbiome template is assigned to the host, the acquisition
process of microbiome equals to assigning each empty slot a unique
microbe taxon, denoting its abundance within the host. The first
generation of hosts in each simulates being randomly seeded with
different microbes out of the possible B taxa. Each host randomly
selects microbe species according to the number of slots in its
microbiome templates, and randomly assigns each taxon to a different
slot thus creating a diverse initial host population.

In the next generations, the host acquires the microbiome
through randomly sampling available microbes from a distribution
dictated by its parent and the entire previous population. The parental
source, P, is simply themicrobiome of the host’s parent normalized to
represent the relative abundance of its microbes, and the population-
wide microbiome, E, is the per-taxon summation of abundances in the
previous population’s microbiomes, also normalized. The final avail-
able microbe distributions a summation of the two sources, weighted
by the vertical and horizontal transmission coefficients Tv,Th 2 R+ ,
representing the relative contribution of the parental source and
population-wide source respectively:

abundance of taxon i in the sampling distribution=Tv � Pi +Th � Ei

ð7Þ

The microbes from the available pool are randomly assigned to the
slots, weighted by their abundance in the pool. Thus, taxa that are
more abundant in the joint contribution of the sources aremore likely
to establish first and inhabit larger slots in the host microbiome’s
template.

Microbiome contribution
The specific contribution of each microbe species to the host’s fitness
is generated at the start of the simulation and remains constant
throughout. For each taxon, a contribution value is randomly selected
within the range of Cmin and Cmax, representing the minimal and
maximal possible contributions respectively. The random sampling is
altered by various parameters following the simulated scenario and is
factored by the contribution rate parameter- λ3(Table S2). (i) A “step”
contribution scenario, where some taxa contribute Cmin, others Cmax,
and λ3 represents the number of taxa to contribute Cmax (Fig. S1a). (ii)
An “exponential decay” contribution scenario, where the sampling is
weighted according to an exponential distribution Expðλ3Þ. Large λ3
values denote a steep density distribution, eventually resulting in a
small number of microbes that contribute a lot, while the rest barely
do. Whereas small λ3 values denote an almost uniform contribution
distribution (Fig. S1b).

Fitness calculation
The fitness of a host is a linear summation of all the contributions of
microbe taxa that dwell in its microbiome, summing a species con-
tribution only once if it is present in the microbiome, dismissing its
abundance. Meaning for host i, the fitness - f i, is calculated as follows:

f i =
XB

j = 1

1ftaxon j in host i0smicrobiomeg � cj ð8Þ

After the fitness of the entire population is calculated, it is divided by
the maximal value in order to adhere to the traditional 0,1½ �
fitness range.

Jaccard distance calculation
Jaccard distance between the microbiome configuration of two hosts
hA and hB with microbiomes A and B was calculated traditionally:

Jaccard distance hA,hB

� �
= 1� jA \ Bj

A∪Bj j ð9Þ

The representing Jaccard distance of a population P was calculated as
the mean of all Jaccard distances within every two hosts in the popu-
lation:

Jaccard Pð Þ=

P
i,j2 1...N½ �, i≠j

Jaccard distance hi,hj

� 	

N
2

� � ð10Þ

Statistical significance calculation
We used standard two-sided t-tests to determine whether observed
differences between different groups were significant. Wherever first
generation fitness scores were compared, the compared groups were
composed of 100 repetitions ×N hosts. Where N was different across
comparisons the calculations were done on the minimalN. Each set of
compared times to coalescencewas comprised ofmeasurements from
100 stochastic simulation repetitions.

Boxplot information
All boxplots in this manuscript are presented with the sample median
and the box representing the 25th to 75th percentiles. Whiskers por-
tray the sample minima and maxima.

Relation to other generative frameworks for modeling host-
microbiome dynamics
Several computational frameworks have been constructed so far for
the modeling of host-microbiome dynamics in population contexts of
both hosts and microbes45–47,49,50,87,88. Among these, the framework we
propose here is most similar to the two models proposed by Zeng
et al.45,46. Our implementation is independent of theirs, and a detailed
comparison among them in the future may be productive, as it may
highlight qualitative differences that arise from seemingly arbitrary
modeling choices and implementation practices. Two particularly
notable differences between Zeng et al.’s (2015, 2017) frameworks and
our framework have to do with the dynamics of construction of a
host’s microbiome, and the way in which the microbiome may influ-
ence host fitness.
(1) A host individual’smicrobiome in the Zeng et al. framework (2015)

is composed of microbes that occupy a pre-determined number
of slots (n = 1000, or n = 100,000, for example); these slots are
filled via multinomial sampling from several possible sources
according to simulation parameters. Our framework’s scheme of
populating the microbiome is slightly more ecologically realistic:
we distinguish between transmission ofmicrobes (a rare event, of
one individual microbe) and their establishment (which may
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depend on the number of previously established species, for
example, even in a niche-neutral model, as described above) and
multiplication within the host, from a single individual to 103−108

individuals, depending on how early in the colonization process
the microbe arrived. Depending on model parameters these
processes can lead to a range of microbiome structures as
discussed above, and the model can thus be used to explore the
ecological determinants of microbiome assembly and their
interaction with dynamics on evolutionary timescales (ofmultiple
host generations), including incorporation of a range of ecologi-
cal considerations and their influence on patterns of microbial
diversity. This includes, for example, direct comparison between
scenarios in which the dominant force is transmission limitation
and scenarios in which the main force shaping the microbiome is
selection that the host environment imposes.

(2) The Zeng et al. (2017) framework includes microbial influence on
host fitness which is slightly different from this influence in our
framework: their approach focuses on a functional perspective, and
each microbe can contribute to one or more of certain functions
that benefit or harm the host. Our framework is structured in a
modular way that allows such exploration in future studies, but in
the version implemented here we explore—as describe above—
several schemesofmicrobial contribution to its host thatmakevery
minimal assumptions about the functional profile of the micro-
biome. We compare different fitness schemes in which each
microbe has an additive contribution to its host’s fitness, each
sampled from a certain distribution, showing that different dis-
tributions would lead to qualitatively different selection dynamics.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Representative samples of the rawdata as it was generated during runs
of the simulations described in this paper is available in github.com/
itaydaybog/MicrobiomeFramework. The full code is provided, allow-
ing the reproduction of all data and figures used in this study. All
produced data can be received from the authors upon request.

Code availability
The code of the framework described in this paper, alongside code for
the results presentation and analysis, is provided in github.com/itay-
daybog/MicrobiomeFramework89. The model was implemented in
Python 3.7.
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